Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589217

RESUMO

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Assuntos
Archaea , Metilação de DNA , Archaea/genética , Perfilação da Expressão Gênica , Expressão Gênica , Metiltransferases/genética , DNA Arqueal/genética
2.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543840

RESUMO

Viruses infecting bacteria (bacteriophages) represent the most abundant viral particles in the human body. They participate in the control of the human-associated bacterial communities and play an important role in the dissemination of virulence genes. Here, we present the identification of a new filamentous single-stranded DNA phage of the family Inoviridae, named Ralstonia Inoviridae Phage 1 (RIP1), in the human blood. Metagenomics and PCR analyses detected the RIP1 genome in blood serum, in the absence of concomitant bacterial infection or contamination, suggesting inovirus persistence in the human blood. Finally, we have experimentally demonstrated that the RIP1-encoded rolling circle replication initiation protein and serine integrase have functional nuclear localization signals and upon expression in eukaryotic cells both proteins were translocated into the nucleus. This observation adds to the growing body of data suggesting that phages could have an overlooked impact on the evolution of eukaryotic cells.


Assuntos
Bacteriófagos , Inovirus , Humanos , Inovirus/genética , Genoma Viral , Bactérias , Bacteriófagos/genética , DNA de Cadeia Simples/metabolismo
3.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38529486

RESUMO

The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCP) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian Mriya, dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae". The previously characterized members of these families, Yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism.

4.
Nat Microbiol ; 9(3): 712-726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443574

RESUMO

Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.


Assuntos
Haloferax volcanii , Complexo de Proteínas do Centro de Reação Fotossintética , Filogenia , Divisão Celular , Haloferax volcanii/genética , Fotossíntese
5.
Nat Commun ; 15(1): 1620, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388540

RESUMO

CRISPR arrays form the physical memory of CRISPR adaptive immune systems by incorporating foreign DNA as spacers that are often AT-rich and derived from viruses. As promoter elements such as the TATA-box are AT-rich, CRISPR arrays are prone to harbouring cryptic promoters. Sulfolobales harbour extremely long CRISPR arrays spanning several kilobases, a feature that is accompanied by the CRISPR-specific transcription factor Cbp1. Aberrant Cbp1 expression modulates CRISPR array transcription, but the molecular mechanisms underlying this regulation are unknown. Here, we characterise the genome-wide Cbp1 binding at nucleotide resolution and characterise the binding motifs on distinct CRISPR arrays, as well as on unexpected non-canonical binding sites associated with transposons. Cbp1 recruits Cren7 forming together 'chimeric' chromatin-like structures at CRISPR arrays. We dissect Cbp1 function in vitro and in vivo and show that the third helix-turn-helix domain is responsible for Cren7 recruitment, and that Cbp1-Cren7 chromatinization plays a dual role in the transcription of CRISPR arrays. It suppresses spurious transcription from cryptic promoters within CRISPR arrays but enhances CRISPR RNA transcription directed from their cognate promoters in their leader region. Our results show that Cbp1-Cren7 chromatinization drives the productive expression of long CRISPR arrays.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/metabolismo , Cromatina/genética , RNA , Regulação da Expressão Gênica
6.
ISME Commun ; 4(1): ycad011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328448

RESUMO

Bathyarchaeia represent a class of archaea common and abundant in sedimentary ecosystems. Here we report 56 metagenome-assembled genomes of Bathyarchaeia viruses identified in metagenomes from different environments. Gene sharing network and phylogenomic analyses led to the proposal of four virus families, including viruses of the realms Duplodnaviria and Adnaviria, and archaea-specific spindle-shaped viruses. Genomic analyses uncovered diverse CRISPR elements in these viruses. Viruses of the proposed family "Fuxiviridae" harbor an atypical Type IV-B CRISPR-Cas system and a Cas4 protein that might interfere with host immunity. Viruses of the family "Chiyouviridae" encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses. These findings present an outline of the Bathyarchaeia virome and offer a glimpse into their counter-defense mechanisms.

7.
mBio ; 15(3): e0033524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380930

RESUMO

Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.


Assuntos
Archaea , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Filogenia , Sequência de Aminoácidos , Archaea/metabolismo , Adenosina Trifosfatases/metabolismo , Ubiquitinas/metabolismo
8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366050

RESUMO

Non-lytic viruses with enveloped pleomorphic virions (family Pleolipoviridae) are ubiquitous in hypersaline environments across the globe and are associated with nearly all major lineages of halophilic archaea. However, their existence in other ecosystems remains largely unknown. Here, we show that evolutionarily-related viruses also infect hyperthermophilic archaea thriving in deep-sea hydrothermal vents. Archaeoglobus veneficus pleomorphic virus 1 (AvPV1), the first virus described for any member of the class Archaeoglobi, encodes a morphogenetic module typical of pleolipoviruses, including the characteristic VP4-like membrane fusion protein. We show that AvPV1 is a non-lytic virus chronically produced in liquid cultures without substantially affecting the growth dynamics of its host with a stable virus-to-host ratio of ~1. Mining of genomic and metagenomic databases revealed broad distribution of AvPV1-like viruses in geographically remote hydrothermal vents. Comparative genomics, coupled with phylogenetic analysis of VP4-like fusogens revealed deep divergence of pleomorphic viruses infecting halophilic, methanogenic, and hyperthermophilic archaea, signifying niche separation and coevolution of the corresponding virus-host pairs. Hence, we propose a new virus family, "Thalassapleoviridae," for classification of the marine hyperthermophilic virus AvPV1 and its relatives. Collectively, our results provide insights into the diversity and evolution of pleomorphic viruses beyond hypersaline environments.


Assuntos
Vírus de Archaea , Euryarchaeota , Vírus , Archaea/genética , Filogenia , Ecossistema , Vírus/genética , Vírion , Vírus de Archaea/genética
9.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365236

RESUMO

Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.


Assuntos
Vírus , Vírus/genética , Metagenômica/métodos , Ecologia , Filogenia , Genoma Viral
10.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421275

RESUMO

Kolmioviridae is a family for negative-sense RNA viruses with circular, viroid-like genomes of about 1.5-1.7 kb that are maintained in mammals, amphibians, birds, fish, insects and reptiles. Deltaviruses, for instance, can cause severe hepatitis in humans. Kolmiovirids encode delta antigen (DAg) and replicate using host-cell DNA-directed RNA polymerase II and ribozymes encoded in their genome and antigenome. They require evolutionary unrelated helper viruses to provide envelopes and incorporate helper virus proteins for infectious particle formation. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Kolmioviridae, which is available at ictv.global/report/kolmioviridae.


Assuntos
Vírus Auxiliares , Viroides , Animais , Humanos , Evolução Biológica , Vírus de RNA de Sentido Negativo , RNA Polimerase II , Mamíferos
11.
Nat Microbiol ; 9(2): 514-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233646

RESUMO

Metatranscriptome sequencing expanded the known diversity of the bacterial RNA virome, suggesting that additional riboviruses infecting bacterial hosts remain to be discovered. Here we employed double-stranded RNA sequencing to recover complete genome sequences of two ribovirus groups from acidic hot springs in Japan. One group, denoted hot spring riboviruses (HsRV), consists of viruses with distinct RNA-directed RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. This group forms a distinct phylum, Artimaviricota, or even kingdom within the realm Riboviria. We identified viruses encoding HsRV-like RdRPs in marine water, river sediments and salt marshes, indicating that this group is widespread beyond extreme ecosystems. The second group, denoted hot spring partiti-like viruses (HsPV), forms a distinct branch within the family Partitiviridae. The genome architectures of HsRV and HsPV and their identification in bacteria-dominated habitats suggest that these viruses infect thermoacidophilic bacteria.


Assuntos
Fontes Termais , Vírus de RNA , Fontes Termais/microbiologia , RNA de Cadeia Dupla , Ecossistema , Filogenia , Japão , Archaea/genética , Bactérias/genética , Vírus de RNA/genética
12.
Methods Mol Biol ; 2732: 1-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060114

RESUMO

During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.


Assuntos
Archaea , Vírus de Archaea , Filogenia , Metagenômica/métodos , Vírus de Archaea/genética , Genoma Arqueal
13.
J Virol ; 97(12): e0130923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092658

RESUMO

IMPORTANCE: Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.


Assuntos
Evolução Molecular , Duplicação Gênica , Vírus Gigantes , Genoma Viral , Vírus Gigantes/genética , Filogenia
14.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069639

RESUMO

Polintons are double-stranded DNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family but encode a distinct protein-primed DNA polymerase B (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda. Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting interphylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of an HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.


Assuntos
Nematoides , Vírus , Humanos , Animais , Filogenia , Elementos de DNA Transponíveis , DNA Polimerase Dirigida por DNA/genética , Vírus/genética , Nematoides/genética
15.
J Gen Virol ; 104(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010130

RESUMO

The family Aoguangviridae includes dsDNA viruses that have been associated with marine archaea. Currently, members of this virus family are known through metagenomics. Virions are predicted to consist of an icosahedral capsid and a helical tail, characteristic of members in the class Caudoviricetes. Aoguangviruses have some of the largest genomes among archaeal viruses and possess most of the components of the DNA replication machinery as well as auxiliary functions. The family Aoguangviridae includes the species Aobingvirus yangshanense. Many unclassified relatives of this virus group, referred to as 'magroviruses', have been discovered by metagenomics in globally distributed marine samples. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Aoguangviridae, which is available at ictv.global/report/aoguangviridae.


Assuntos
Replicação Viral , Vírus , Genoma Viral , Vírus/genética , Vírion/genética , Filogenia
16.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37823788

RESUMO

Qinviridae is a family of negative-sense RNA viruses with genomes of 7.3-8.2 kb that have been associated with crustaceans, insects, gastropods, and nematodes. The qinvirid genome consists of two segments, each with at least one open reading frame (ORF). The large (L) segment ORF encodes a large protein containing an RNA-directed RNA polymerase (RdRP) domain. The small (S) segment ORF encodes a nucleocapsid protein. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Qinviridae, which is available at ictv.global/report/qinviridae.


Assuntos
Vírus de RNA , Animais , Vírus de RNA/genética , Insetos/genética , Crustáceos , Filogenia , Genoma Viral , Replicação Viral , Vírion/genética
17.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873739

RESUMO

Tosoviridae is a family of negative-sense RNA viruses with genomes totaling about 12.3 kb that have been found in turtles. The tosovirid genome consists of two segments, each with two open reading frames (ORFs) in ambisense orientation. The small (S) segment encodes a nucleoprotein (NP) and a glycoprotein precursor (GPC); the large (L) segment encodes an L protein containing an RNA-directed RNA polymerase (RdRP) domain and a zinc-binding (Z) protein. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tosoviridae, which is available at ictv.global/report/tosoviridae.


Assuntos
Vírus de RNA , Vírus de RNA/genética , Genoma Viral
18.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873742

RESUMO

Amnoonviridae is a family of negative-sense RNA viruses with genomes totalling about 10.3 kb. These viruses have been found in fish. The amnoonvirid genome consists of 10 segments, each with at least 1 open reading frame (ORF). The RNA1-3 ORFs encode the three subunits of the viral polymerase. The RNA4 ORF encodes a nucleoprotein. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Amnoonviridae, which is available at ictv.global/report/amnoonviridae.


Assuntos
Genoma Viral , Vírus de RNA , Animais , Vírus de RNA/genética , Filogenia , Vírus de RNA de Sentido Negativo , Fases de Leitura Aberta , Replicação Viral
19.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37781628

RESUMO

Bathyarchaeia represent a class of archaea common and abundant in sedimentary ecosystems. The virome of Bathyarchaeia so far has not been characterized. Here we report 56 metagenome-assembled genomes of Bathyarchaeia viruses identified in metagenomes from different environments. Gene sharing network and phylogenomic analyses led to the proposal of four virus families, including viruses of the realms Duplodnaviria and Adnaviria, and archaea-specific spindle-shaped viruses. Genomic analyses uncovered diverse CRISPR elements in these viruses. Viruses of the proposed family 'Fuxiviridae' harbor an atypical type IV-B CRISPR-Cas system and a Cas4 protein that might interfere with host immunity. Viruses of the family 'Chiyouviridae' encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibition of host defenses. These findings present an outline of the Bathyarchaeia virome and offer a glimpse into their counter-defense mechanisms.

20.
Curr Opin Syst Biol ; 362023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37779558

RESUMO

Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide RNA directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited CRISPR systems that lost the capacity to cleave target DNA and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS200/IS605 and IS607 transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...